Separable approximations and decomposition methods for the augmented Lagrangian

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Separable Approximations and Decomposition Methods for the Augmented Lagrangian

In this paper we study decomposition methods based on separable approximations for minimizing the augmented Lagrangian. In particular, we study and compare the Diagonal Quadratic Approximation Method (DQAM) of Mulvey and Ruszczyński [13] and the Parallel Coordinate Descent Method (PCDM) of Richtárik and Takáč [23]. We show that the two methods are equivalent for feasibility problems up to the s...

متن کامل

On Full Jacobian Decomposition of the Augmented Lagrangian Method for Separable Convex Programming

The augmented Lagrangian method (ALM) is a benchmark for solving a convex minimization model with linear constraints. We consider the special case where the objective is the sum of m functions without coupled variables. For solving this separable convex minimization model, it is usually required to decompose the ALM subproblem at each iteration into m smaller subproblems, each of which only inv...

متن کامل

Working Paper on Augmented Lagrangian Decomposition Methods for Multistage Stochastic Programs on Augmented Lagrangian Decomposition Methods for Multistage Stochastic Programs on Augmented Lagrangian Decomposition Methods for Multistage Stochastic Programs

A general decomposition framework for large convex optimization problems based on augmented Lagrangians is described. The approach is then applied to multistage stochastic programming problems in two di erent ways: by decomposing the problem into scenarios and by decomposing it into nodes corresponding to stages. Theoretical convergence properties of the two approaches are derived and a computa...

متن کامل

Practical Augmented Lagrangian Methods

for all x ∈ IR, λ ∈ IR, μ ∈ IR +. PHR-based Augmented Lagrangian methods for solving (1) are based on the iterative (approximate) minimization of Lρ with respect to x ∈ Ω, followed by the updating of the penalty parameter ρ and the Lagrange multipliers approximations λ and μ. The most popular practical Augmented Lagrangian method gave rise to the Lancelot package [24, 25, 26]. Lancelot does not...

متن کامل

Global and Adaptive Scaling in a Separable Augmented Lagrangian Algorithm

Abstract. In this paper, we analyze the numerical behaviour of a separable Augmented Lagrangian algorithm with multiple scaling parameters, different parameters associated with each dualized coupling constraint as well as with each subproblem. We show that an optimal superlinear rate of convergence can be theoretically attained in the twice differentiable case and propose an adaptive scaling st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Optimization Methods and Software

سال: 2014

ISSN: 1055-6788,1029-4937

DOI: 10.1080/10556788.2014.966824